UNCOUNTABLY MANY DIFFERENT INVOLUTIONS OF 5s
نویسنده
چکیده
منابع مشابه
Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation
In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...
متن کاملOn Groups with Uncountably Many Subgroups of Finite Index
Let K be the kernel of an epimorphism χ : G → Z, for G a finitely presented group. If K has uncountably many normal subgroups of finite index r, then K has uncountably many subgroups (not necessarily normal) of any finite index greater than r. In particular, this is the case whenever G is subgroup separable and K is nonfinitely generated. Assume that G has an abelian HNN base contained in K. If...
متن کاملChain groups of homeomorphisms of the interval
We introduce and study the notion of a chain group of homeomorphisms of a one-manifold, which is a certain generalization of Thompson’s group F. The resulting class of groups exhibits a combination of uniformity and diversity. On the one hand, a chain group either has a simple commutator subgroup or the action of the group has a wandering interval. In the latter case, the chain group admits a c...
متن کاملInvolutions on Generating Functions
We study a family of involutions on the space of sequences. Many arithmetically or combinatorially interesting sequences appear as eigensequences of the involutions. We develop new tools for studying sequences using these involutions.
متن کاملLearning Finitely Additive Probabilities: an Impossibility Theorem
If (X,X ) is a measure space and F◦ ⊂ X is a field generated either by a countable class of sets or by a Vapnik-Červonenkis class, then if μ is purely finitely additive, there exist uncountably many μ′ agreeing with μ on F◦ and having |μ(A) − μ′(A)| = 1 for uncountably many A. If μ is also non-atomic, then for any r ∈ (0, 1], |μ(Ar)− μ(Ar)| = r for uncountably many Ar. Al-Najjar’s [1] unlearnab...
متن کامل